3.34 \(\int x^2 (a+b \text {sech}^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=140 \[ -\frac {2 b \tan ^{-1}\left (e^{\text {sech}^{-1}(c x)}\right ) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^3}-\frac {b x \sqrt {\frac {1-c x}{c x+1}} (c x+1) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^2}+\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2+\frac {i b^2 \text {Li}_2\left (-i e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}-\frac {i b^2 \text {Li}_2\left (i e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}-\frac {b^2 x}{3 c^2} \]

[Out]

-1/3*b^2*x/c^2+1/3*x^3*(a+b*arcsech(c*x))^2-2/3*b*(a+b*arcsech(c*x))*arctan(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(
1/2))/c^3+1/3*I*b^2*polylog(2,-I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))/c^3-1/3*I*b^2*polylog(2,I*(1/c/x+(-
1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))/c^3-1/3*b*x*(c*x+1)*(a+b*arcsech(c*x))*((-c*x+1)/(c*x+1))^(1/2)/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6285, 5451, 4185, 4180, 2279, 2391} \[ \frac {i b^2 \text {PolyLog}\left (2,-i e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}-\frac {i b^2 \text {PolyLog}\left (2,i e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}-\frac {b x \sqrt {\frac {1-c x}{c x+1}} (c x+1) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^2}-\frac {2 b \tan ^{-1}\left (e^{\text {sech}^{-1}(c x)}\right ) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^3}+\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2-\frac {b^2 x}{3 c^2} \]

Antiderivative was successfully verified.

[In]

Int[x^2*(a + b*ArcSech[c*x])^2,x]

[Out]

-(b^2*x)/(3*c^2) - (b*x*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)*(a + b*ArcSech[c*x]))/(3*c^2) + (x^3*(a + b*ArcSec
h[c*x])^2)/3 - (2*b*(a + b*ArcSech[c*x])*ArcTan[E^ArcSech[c*x]])/(3*c^3) + ((I/3)*b^2*PolyLog[2, (-I)*E^ArcSec
h[c*x]])/c^3 - ((I/3)*b^2*PolyLog[2, I*E^ArcSech[c*x]])/c^3

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4185

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_)), x_Symbol] :> -Simp[(b^2*(c + d*x)*Cot[e + f*x]*
(b*Csc[e + f*x])^(n - 2))/(f*(n - 1)), x] + (Dist[(b^2*(n - 2))/(n - 1), Int[(c + d*x)*(b*Csc[e + f*x])^(n - 2
), x], x] - Simp[(b^2*d*(b*Csc[e + f*x])^(n - 2))/(f^2*(n - 1)*(n - 2)), x]) /; FreeQ[{b, c, d, e, f}, x] && G
tQ[n, 1] && NeQ[n, 2]

Rule 5451

Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(n_.)*Tanh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> -Si
mp[((c + d*x)^m*Sech[a + b*x]^n)/(b*n), x] + Dist[(d*m)/(b*n), Int[(c + d*x)^(m - 1)*Sech[a + b*x]^n, x], x] /
; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]

Rule 6285

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int x^2 \left (a+b \text {sech}^{-1}(c x)\right )^2 \, dx &=-\frac {\operatorname {Subst}\left (\int (a+b x)^2 \text {sech}^3(x) \tanh (x) \, dx,x,\text {sech}^{-1}(c x)\right )}{c^3}\\ &=\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2-\frac {(2 b) \operatorname {Subst}\left (\int (a+b x) \text {sech}^3(x) \, dx,x,\text {sech}^{-1}(c x)\right )}{3 c^3}\\ &=-\frac {b^2 x}{3 c^2}-\frac {b x \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^2}+\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2-\frac {b \operatorname {Subst}\left (\int (a+b x) \text {sech}(x) \, dx,x,\text {sech}^{-1}(c x)\right )}{3 c^3}\\ &=-\frac {b^2 x}{3 c^2}-\frac {b x \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^2}+\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2-\frac {2 b \left (a+b \text {sech}^{-1}(c x)\right ) \tan ^{-1}\left (e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}+\frac {\left (i b^2\right ) \operatorname {Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\text {sech}^{-1}(c x)\right )}{3 c^3}-\frac {\left (i b^2\right ) \operatorname {Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\text {sech}^{-1}(c x)\right )}{3 c^3}\\ &=-\frac {b^2 x}{3 c^2}-\frac {b x \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^2}+\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2-\frac {2 b \left (a+b \text {sech}^{-1}(c x)\right ) \tan ^{-1}\left (e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}+\frac {\left (i b^2\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}-\frac {\left (i b^2\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}\\ &=-\frac {b^2 x}{3 c^2}-\frac {b x \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )}{3 c^2}+\frac {1}{3} x^3 \left (a+b \text {sech}^{-1}(c x)\right )^2-\frac {2 b \left (a+b \text {sech}^{-1}(c x)\right ) \tan ^{-1}\left (e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}+\frac {i b^2 \text {Li}_2\left (-i e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}-\frac {i b^2 \text {Li}_2\left (i e^{\text {sech}^{-1}(c x)}\right )}{3 c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.27, size = 224, normalized size = 1.60 \[ \frac {1}{3} \left (a^2 x^3+a b \left (2 x^3 \text {sech}^{-1}(c x)-\frac {\sqrt {\frac {1-c x}{c x+1}} \left (c^3 x^3+\sqrt {1-c^2 x^2} \sin ^{-1}(c x)-c x\right )}{c^3 (c x-1)}\right )+\frac {b^2 \left (c^3 x^3 \text {sech}^{-1}(c x)^2+i \text {Li}_2\left (-i e^{-\text {sech}^{-1}(c x)}\right )-i \text {Li}_2\left (i e^{-\text {sech}^{-1}(c x)}\right )-c x-c x \sqrt {\frac {1-c x}{c x+1}} (c x+1) \text {sech}^{-1}(c x)+i \text {sech}^{-1}(c x) \log \left (1-i e^{-\text {sech}^{-1}(c x)}\right )-i \text {sech}^{-1}(c x) \log \left (1+i e^{-\text {sech}^{-1}(c x)}\right )\right )}{c^3}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2*(a + b*ArcSech[c*x])^2,x]

[Out]

(a^2*x^3 + a*b*(2*x^3*ArcSech[c*x] - (Sqrt[(1 - c*x)/(1 + c*x)]*(-(c*x) + c^3*x^3 + Sqrt[1 - c^2*x^2]*ArcSin[c
*x]))/(c^3*(-1 + c*x))) + (b^2*(-(c*x) - c*x*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)*ArcSech[c*x] + c^3*x^3*ArcSec
h[c*x]^2 + I*ArcSech[c*x]*Log[1 - I/E^ArcSech[c*x]] - I*ArcSech[c*x]*Log[1 + I/E^ArcSech[c*x]] + I*PolyLog[2,
(-I)/E^ArcSech[c*x]] - I*PolyLog[2, I/E^ArcSech[c*x]]))/c^3)/3

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (b^{2} x^{2} \operatorname {arsech}\left (c x\right )^{2} + 2 \, a b x^{2} \operatorname {arsech}\left (c x\right ) + a^{2} x^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsech(c*x))^2,x, algorithm="fricas")

[Out]

integral(b^2*x^2*arcsech(c*x)^2 + 2*a*b*x^2*arcsech(c*x) + a^2*x^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {arsech}\left (c x\right ) + a\right )}^{2} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsech(c*x))^2,x, algorithm="giac")

[Out]

integrate((b*arcsech(c*x) + a)^2*x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.64, size = 372, normalized size = 2.66 \[ \frac {x^{3} a^{2}}{3}+\frac {x^{3} b^{2} \mathrm {arcsech}\left (c x \right )^{2}}{3}-\frac {b^{2} \mathrm {arcsech}\left (c x \right ) \sqrt {-\frac {c x -1}{c x}}\, \sqrt {\frac {c x +1}{c x}}\, x^{2}}{3 c}-\frac {b^{2} x}{3 c^{2}}+\frac {i b^{2} \mathrm {arcsech}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{3 c^{3}}-\frac {i b^{2} \mathrm {arcsech}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{3 c^{3}}+\frac {i b^{2} \dilog \left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{3 c^{3}}-\frac {i b^{2} \dilog \left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{3 c^{3}}+\frac {2 a b \,x^{3} \mathrm {arcsech}\left (c x \right )}{3}-\frac {a b \sqrt {-\frac {c x -1}{c x}}\, x^{2} \sqrt {\frac {c x +1}{c x}}}{3 c}+\frac {a b \sqrt {-\frac {c x -1}{c x}}\, x \sqrt {\frac {c x +1}{c x}}\, \arcsin \left (c x \right )}{3 c^{2} \sqrt {-c^{2} x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsech(c*x))^2,x)

[Out]

1/3*x^3*a^2+1/3*x^3*b^2*arcsech(c*x)^2-1/3/c*b^2*arcsech(c*x)*(-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*x^2-1/3
*b^2*x/c^2+1/3*I/c^3*b^2*arcsech(c*x)*ln(1+I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))-1/3*I/c^3*b^2*arcsech(c
*x)*ln(1-I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))+1/3*I/c^3*b^2*dilog(1+I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)
^(1/2)))-1/3*I/c^3*b^2*dilog(1-I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))+2/3*a*b*x^3*arcsech(c*x)-1/3/c*a*b*
(-(c*x-1)/c/x)^(1/2)*x^2*((c*x+1)/c/x)^(1/2)+1/3/c^2*a*b*(-(c*x-1)/c/x)^(1/2)*x*((c*x+1)/c/x)^(1/2)/(-c^2*x^2+
1)^(1/2)*arcsin(c*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{3} \, a^{2} x^{3} + \frac {1}{3} \, {\left (2 \, x^{3} \operatorname {arsech}\left (c x\right ) - \frac {\frac {\sqrt {\frac {1}{c^{2} x^{2}} - 1}}{c^{2} {\left (\frac {1}{c^{2} x^{2}} - 1\right )} + c^{2}} + \frac {\arctan \left (\sqrt {\frac {1}{c^{2} x^{2}} - 1}\right )}{c^{2}}}{c}\right )} a b + b^{2} \int x^{2} \log \left (\sqrt {\frac {1}{c x} + 1} \sqrt {\frac {1}{c x} - 1} + \frac {1}{c x}\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsech(c*x))^2,x, algorithm="maxima")

[Out]

1/3*a^2*x^3 + 1/3*(2*x^3*arcsech(c*x) - (sqrt(1/(c^2*x^2) - 1)/(c^2*(1/(c^2*x^2) - 1) + c^2) + arctan(sqrt(1/(
c^2*x^2) - 1))/c^2)/c)*a*b + b^2*integrate(x^2*log(sqrt(1/(c*x) + 1)*sqrt(1/(c*x) - 1) + 1/(c*x))^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x^2\,{\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}^2 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*acosh(1/(c*x)))^2,x)

[Out]

int(x^2*(a + b*acosh(1/(c*x)))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \left (a + b \operatorname {asech}{\left (c x \right )}\right )^{2}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asech(c*x))**2,x)

[Out]

Integral(x**2*(a + b*asech(c*x))**2, x)

________________________________________________________________________________________